
Geometric Quantification of Features in Large Unsteady Flow

Wesley Kendall and Jian Huang∗

The University of Tennessee, Knoxville

Tom Peterka†

Argonne National Laboratory

ABSTRACT

Interactive exploration of flow features in large-scale 3D unsteady
flow data is one of the most challenging problems in visualization
today. In an effort to comprehensively explore the complex fea-
ture spaces in these datasets, we have designed a scalable frame-
work for investigating a multitude of characteristics from traced
fieldlines. This new capability has allowed us to examine vari-
ous neighborhood-based geometric attributes in concert with other
scalar quantities, a type of analysis that was not previously possi-
ble due to the large computational overhead and I/O requirements.
We have integrated visual analytics methods into our approach by
allowing users to procedurally and interactively describe and ex-
tract high-level flow features. In this work, we show the generality
and expressiveness that is offered by this approach, and we show
its efficacy by exploring various phenomena in a large global ocean
modeling simulation.

1 INTRODUCTION

3D unsteady flow fields contain a vast space of geometric, tempo-
ral, spatial, and derived scalar characteristics that can be useful for
understanding flow features. Quantifying global-scale phenomena
using these characteristics is essential in developing deeper under-
standings of qualitative events in the data. For example, consider
cold-core eddies, which are a widely-studied ocean phenomena.
Cold-core eddies are defined by a swirling region of ocean with
the center of the vortex being cooler than the outside. One could
define this feature by tracing the flow and extracting the traces that
follow a rotational pattern. This then begs the question of how to
quantitatively define the rotation, and more importantly – how to
describe the cooling effect near the center of the vortex.

The search space for even this easy-to-describe problem is al-
ready huge. Many parameters are sensitive to the outcome of the
feature characterization. For instance, large- and small-scale eddies
will have to be defined with different rotational parameters. Fur-
thermore, temperature measurements will be dependent on the area
of the ocean being studied. Because of the large exploratory space,
data analytics is indispensable in the feature characterization and
extraction process. User-guided exploration with visual feedback
is perhaps the only way this problem can be solved in an effective
manner.

Interactively pruning a problem space on extreme-scale flow
datasets brings great challenges. While interactivity may not be a
problem for small-scale data, the focus on parallelism and its rela-
tionship to the feature extraction process becomes the most impor-
tant factor for maintaining interactivity on large data. Here, we have
specifically focused on this issue. We have directly coupled graphi-
cal and procedural characterization of geometric flow features with
two highly-scalable data processing and feature extraction compo-
nents.

We have chosen to focus on geometric flow field features for
two main reasons. First, traced flow geometry is often orders-of-

∗e-mail: {kendall, huangj}@eecs.utk.edu
†e-mail: tpeterka@mcs.anl.gov

magnitude smaller than the original scalar representation of the
flow, making it a viable reduced representation of the original
extreme-scale data. Second, there are a multitude of derived geo-
metric characteristics that may be computed from traced geometry.
The expressiveness offered by geometric features has already been
shown [11], and, as we will show, geometric features that are de-
fined by a variable-length neighborhood size are powerful for fea-
ture characterization.

The scalability of our system paired with an expressive graphical
feature characterization component has allowed us to interactively
examine how geometric flow characteristics aid in describing qual-
itative flow features. For example, it has allowed us to quantify
features such as eddy activity and major ocean currents in a large-
scale ocean simulation. We describe our systematic approach and
detail its execution on a simulation-scale architecture.

2 PARALLEL PIPELINE FOR GEOMETRIC FLOW ANALYTICS

Our system is designed as a pipeline of parallel components tightly
coupled with a remote interface for data analytics. An overview
of the pipeline is shown in Figure 1. We briefly describe the data
flow of the pipeline here before detailing the components in later
sections.

We begin by assuming the following scenario – a large-scale sim-
ulation has just completed and saved a scientific dataset on a par-
allel file system. The velocity components, along with other scalar
values, are saved as tuples on a rectilinear grid. Although the simu-
lation may have only computed one timestep at a time during exe-
cution, the data processing backend has to deal with the entire time
series for generating fieldlines.

Recent research in parallel particle tracing [9] is used to han-
dle out-of-core time-varying fieldline tracing. The dataset is seeded
with particles at a density specified by the user, and fieldlines are
traced through time. The resulting geometry is saved as points that
form lines. The “scalar merging” step then interpolates scalar val-
ues that reside in the dataset (such as salinity and temperature val-
ues in this example) and stores them with their associated points in
the geometry.

By performing this preprocessing step, we have significantly
reduced the size of our dataset. We have also transformed our
problem into a data-parallel problem where we can obtain paral-
lel speedup by distributing and querying data among many pro-
cesses. The Scalable Querying Interface (SQI) [5] is used to do
this. Queries are constructed in a procedural manner with a remote
interface, sent to the backend querying system, and the results are
returned and rendered interactively. The process of refining and
extracting the feature description happens iteratively as the user ex-
plores features. Resulting feature specifications can be stored in a
concise format and used for either sharing or extracting the feature
again for other parallel analysis.

Details of the parallel geometry processing, feature characteriza-
tion, feature extraction, and visualization are covered in the follow-
ing sections.



Figure 1: Example of our pipeline for large-scale analytics of flow data. We provide the example of a simulation dumping off many files in
the netCDF format with multiple variables. Parallel and serial components are outlined separately. The interactive analysis process occurs
between a remote client and a querying backend. Section 2 provides an overview of the pipeline.

3 SCALABLE GEOMETRY PROCESSING

Processing of geometry, i.e. the fieldline tracing and scalar merging,
is the most data-intensive component of the application. We have
leveraged various large-data processing techniques in order to scale
to today’s largest architectures.

For parallel fieldline tracing, we use recent research imple-
mented in the OSUFlow particle tracing library [9]. The parallel
particle tracing is designed to operate in a distributed-memory envi-
ronment, where nodes must explicity pass data to one another using
the message passing model. It is also engineered to trace time-
varying fieldlines out of core, only loading the time span necessary
during particle tracing.

OSUFlow first partitions the dataset into 4D blocks that are as-
signed round robin to processes. For better load balancing, we par-
tition the dataset at a finer granularity and assign eight blocks per
process. Once a partition is created, it is sent to the Block I/O Layer
(BIL) [6]. BIL is a high-performance parallel I/O library that op-
erates on multivariable datasets stored across many files. Results
from [6] show its ability to effectively utilize up to 90% of the avail-
able bandwidth on modern parallel file systems. In our application
examples, BIL reads 4D blocks spread across multiple files in the
netCDF format.

When the data is read, processes randomly place particles in a
uniform distribution at a density specified by the user. The par-
ticles are then integrated along the flow field using a fourth-order
adaptive-size Runge-Kutta integration method. Particles that exit
the subdomain of a block during tracing are placed in a communi-
cation queue. Processes synchronize during tracing and exchange
outlying particles to the owner of the proper subdomain. Parti-
cles progress at the same speed through time, allowing OSUFlow
to fetch timesteps during tracing and stream datasets that cannot
completely fit in memory. Once particle tracing is finished, partial
fieldline traces reside across the processes. We stitch the partial
fieldlines together by using the parallel sample sorting algorithm to
sort the geometry while keeping it distributed across processes.

After fieldlines have been traced, other scalar values are merged
with the geometry. To perform this step, we first assign each pro-
cess a block of data and read all of the associated scalar values in
parallel using BIL. After this, we read the computed geometry in
parallel and bin the fieldline vertices to the processes that contain
their bounding block of scalar data. All relevant scalar values are
either computed (such as divergence and vorticity of the flow) or
interpolated (such as temperature and salinity variables) and stored
with the points. The points are transformed back into their field-
line representation and stored on disk with their associated scalar
content.

(a) Angle of Turn (b) Residence

Figure 2: 2D examples of our neighborhood-based geometric fea-
tures. Angle of turn is calculated by the angle of vectors formed
from the end points at varying arc lengths from a vertex. Residence
length is computed by the arc length of a fieldline that resides in a
box around a vertex. The residence time can also be computed by
dividing this length by the velocity magnitude along the line.

4 FEATURE SPECIFICATION AND PROCEDURAL CHARAC-
TERIZATION

We utilize a rich feature set and characterization method for extract-
ing features. Our feature set consists of the following quantities.

• Dimensional Values - Each point of the fieldline contains [x,
y, z, t] tuples that allow the user to relate dimensional informa-
tion of the fieldline to the feature of interest. For example, one
would need this information to extract turbulent flow regions
that progress downwards in the z direction through time.

• Scalar Quantities - Each point of the fieldline also contains
scalar properties that are useful for analyses. For the ocean
and atmospheric examples in this work, temperature, pres-
sure, salinity, CO2, and other properties are often of inter-
est when relating streamline geometry to a feature of interest.
Furthermore, other derived quantities can be computed from
the scalar fields such as flow divergene and vorticity. Scalar
quantities such as these allow for more expressiveness in fea-
ture characterization, for example, allowing the user to extract
fieldlines that travel through areas of high pressure and high
temperature gradients.

• Neighborhood-Based Geometric Quantities - The heart of our
feature specification comes from compute various geometric
properties for each point of the fieldlines. These properties
are defined based on a variable-sized neighborhood, which
is a meaningful parameter in regards to specifying transient
and long-term flow features. Furthermore, these variables can
be computed on the fly since they are only dependent on the
fieldline data. The neighborhood-based geometric attributes
we explore are angle of turn and residence. The properties and
computation of these features are discussed in the following.


















Figure 3: An example of a query tree. The left-most query extracts
fieldlines that primarily swirl. The other two queries ensure the
fieldlines start with a temperature below 50 degrees and end with a
temperature above 50 degrees.

Angle of Turn Our use of angle of turn is patterned after the
use of winding angle, which can be computed along the fieldline
and used to find swirling patterns such as vortex cores [10]. Another
similar example is computing the curvature along the fieldline [11].
For finer granularity, we used a variable-length window along the
fieldline and computed the angle of turn at each vertex. Figure 2a
illustrates this. Given a point R and a neighborhood radius of one,
we move an arc length of one to the right to get point S and an arc
length of one to the left to get point Q. The angle of turn is com-

puted by subtracting the angle formed by
−→
RS and

−→
RQ from 180◦.

Similarly, we can use a neighborhood radius of two to compute an-
gle of turn over a longer length. Using combinations of various
neighborhood sizes offers intuitive methods when describing field-
lines with swirling characteristics or fieldlines that stay straight or
make abrupt transitions.

Residence Residence describes the residence length and resi-
dence time of the fieldline at each of its vertices. A 2D illustration
is provided in Figure 2b. Given a vertex R, we create a box around
it and measure the total arc length of the fieldline from the right
and left of R until it exits the box. Residence time is computed by
taking the summation of the arc length of every segment inside the
box and dividing it by the average velocity magnitude of the two
points on each segment.

Residence length and time provide an interesting span space.
High length and low time indicate fast swirling areas, while high
length and high time indicate slower swirling regions. Low length
and high time are useful for viewing fieldlines moving towards a
critical point while low length and low time indicate fast and rel-
atively straight fieldlines. Similar to angle of turn, these attributes
may be computed at varying neighborhood sizes to assess small-
and large-scale phenomena.

Feature Characterization Using Query Trees Procedural
feature characterization has been used in a variety of research for
scalar datasets. The most related example is SimVis [1], which uses
a feature definition language to apply logical operations to ranges
of scalars. Another is the approach of [12], which uses set opera-
tions to procedurally combine and compare queried volumes. We
use a similar concept known as “query trees.” Query trees are the
formulation of a tree that contains queries as leaves and various log-
ical operations (¬, ∧, ∨, ⊕) at the nodes of the tree. The queries
themselves are Boolean range queries and may be used to restrict
ranges of any attribute of the dataset, whether it be spatial, tempo-
ral, scalar, or geometric. In contrast to scalar-based methods such
as those in SimVis, our queries operate on individual vertices and
return the entire fieldline geometry when a user-specified threshold
of vertices of the fieldline match the given query.

Figure 3 shows an example of a query tree. In this example,
the left-most node issues a query for fieldlines that have an angle
of turn (within a neighborhood size of four) that is greater than 20
degrees for at least 75% of the vertices on the fieldline. The other
two queries specify fieldlines that have a temperature lower than
50 degrees for at least five vertices in the first five timesteps, and
a temperate higher than 50 degrees for at least five vertices in the
last five timesteps. The logical and of all of the queried data returns
fieldlines that “mostly rotate while starting cool and then finishing
warm.”

The degree of freedom presented by query trees allows specifi-
cation of concepts like “fieldlines that stay straight for half of their
existence and also exhibit swirling patterns for at least ten percent
of their continuation.” Similarly, it also allows flexibility in relat-
ing fieldline geometry to scalar, spatial, and temporal quantities.
It is easy to formulate “fieldlines that cross through the upper right
quadrant of the dataset, avoid the center region, and then go through
the bottom left quadrant” with query trees. We provide more exam-
ples of these types of concepts in Section 6. We discuss how the
queries are remotely processed and visualized in the next section.

5 PARALLEL FEATURE EXTRACTION AND VISUALIZATION

Query trees integrate smoothly into the parallel pipeline since we
utilize a large-scale querying system built with the Scalable Query
Interface (SQI) [5]. The querying system starts by assigning and
reading fieldline data in parallel using MPI File read all. Once
data is read, fieldlines are randomly shuffled among processes for
better load balancing during querying. SQI then builds a distributed
search structure on top of the vertices to extract relevant data when
querying.

After the search structure is built, we have to maintain additional
data structures to aid in processing queries. During querying, a
count array maintains the amount of vertices that matched the query
for each fieldline. A bit in a bitfield is set for each fieldline that has
the user-specified threshold of vertices matching the query. This
bitfield is maintained during recursive processing of the query tree
and combined at the nodes during logical operations with other bit-
fields. The final bitfield at the root of the tree describes all fieldlines
that matched the query.

The user has the ability to limit the amount of fieldlines that are
returned. This is useful for creating clutter-free visualizations and
for simply overviewing the entire flow field. Since we originally
distribute the fieldlines randomly, each process returns up to F/P
randomly chosen fieldlines from their local results, where F is the
limit set by the user and P is the number of processes. Although this
method does not always exactly adhere to the set limit, it does pro-
vide a fast approximation that avoids unnecessary communication.
Once this step is over, the resulting fieldlines are gathered to the
root process and then streamed to the interface in packed messages.

Visualization is performed on the client side using traditional
flow visualization techniques. We render cylinders or lines for the
fieldines and use up to three variables of interest for controling the
color, width, and opacity of the fieldlines. For providing context in-
formation in visualizations, the user has the option to use as many
query trees as they want, with each tree representing a different fea-
ture in the same viewport. This allows them to highlight different
features of interest or show them in the context of the entire dataset.

6 REPRESENTATIVE USAGE EXAMPLES

We provide usage examples from the classic tornado dataset and an
atmospheric simulation to show the flexibility of our approach. We
note that the parameters used in queries are specific to the dataset,
and the units of measurement for the geometric queries are based
on the grid spacing and velocity magnitudes. What this means,
for example, is that a residence time of 120 could be considered
a “low” time for the tornado dataset but have a different meaning



(a) Low Residence Time (b) High Angle of Turn

Figure 4: Examples from the tornado dataset using (a) low resi-
dence time to show the fast and relatively straight flow, and (b) high
angle of turn to highlight a vortical region. In (b), we have also in-
cluded a snapshot of the extracted vortex core using a region-growth
algorithm.

in other datasets. Also, when using the term “neighborhood size”
for geometric attributes, we are specifically talking about either the
radius of the arc length (for angle of turn) or the radius of the box
(for residence) in grid units.

Neighborhood-Based Geometric Feature Examples We
use the tornado dataset to show examples of using neighborhood-
based geometric characteristics to extract features. The tornado
dataset is stored on a 1283 grid across 50 timesteps.

To view the areas of fast and relatively straight flow, we issued
a query for fieldlines that contain low residence times (< 120) in a
neighborhood size of 4 for at least 5% of their vertices. The result is
shown in Figure 4a. The visualization shows the fieldlines around
the core of the tornado that have the high velocities. The width of
the lines is modulated by time, showing the clockwise rotation of
the tornado. The color is modulated by velocity magnitude, show-
ing the inner parts of the funnel (in purple) that go faster than the
outer parts (in blue) that have lost speed.

To view the core and vortical regions of the tornado, we issued a
query for fieldlines that have high angle of turn (> 25◦) in a neigh-
borhood size of 2 for at least 25% of their vertices. We also queried
the entire dataset to provide context information and restricted the
result to 200 random fieldlines to avoid visual clutter. The visual-
ization is shown in Figure 4b. The core of the tornado is shown
with a summary of the surrounding fieldlines. The color of the core
structure is modulated by time; one can observe that the funnel of
the tunnel moves upward from lower timesteps (in blue) to later
timesteps (in purple). The width of the core structure is modulated
by velocity magnitude, showing decreased velocity when the flow
reaches the top of the tornado. To the right of the rendering, we
have also included a snapshot of the vortex core that was extracted
from one timestep of the dataset using a region-growth algorithm
from [4] that segments vortex core areas. As expected, the queried
vortical area closely matches the extracted core line. This suggests
that angle of turn could be a viable feature in the detection of vor-
tices, however, future study is needed to confirm this.

Dimension-Based Feature Examples As described earlier,
we can relate dimensional and scalar values to flow features of in-
terest. We use the GEOS-5 atmospheric modeling dataset to illus-
trate this. Our GEOS-5 dataset is simulated in daily intervals across
two years (starting at year 2000) on a 288 by 181 by 72 curvilinear
grid. Eight different parameter runs are present, which start the me-
teorology with different initial parameters. The different parameter

(a) Fukushima Time Until Arrival

(b) Cape Grim Incoming Flow Variability

Figure 5: Dimesion-based flow features. The first figure shows a
query for Fukushima starting in March 2000 and colors the lines
based on time. The second figure shows the incoming flow into
Cape Grim in May 2000 for three months in advanced. The flow is
colored by different model runs to examine internal model variabil-
ity.

runs are useful for studying the sensitivity and convergence of the
conditions over time.

In the first example, we examined the patterns of the flow field di-
rectly after the Fukushima nuclear disaster that happened in March
of 2011. Although our dataset is simulated across year 2000 - 2001,
the yearly patterns of the flow field stay relatively similar from year
to year. We issued a query for the fieldlines that started in the lower
atmospheric layers of March 2000. We show a rendering from one
parameter run of the dataset in Figure 5a. The fieldlines are col-
ored by time, with blue representing 1 – 3 days, yellow 3 – 5 days,
and green 5 – 7 days. The visualization verifies real-world events.
According to news 1, low-level radioactive particles reached the
United States within seven days of the Fukushima disaster.

In the second example, we examine the variability of the differ-
ent parameter runs in the GEOS-5 dataset. According to our atmo-
spheric scientists, Cape Grim, Tasmania is an area of high variabil-
ity among parameter runs of the GEOS-5 model. We examined the
variability of the flow coming into Cape Grim by issuing a query
for fieldlines across all eight parameter runs that flow directly into
Cape Grim. A visualization showing fieldlines flowing into Cape
Grim in May 2000 with a three-month lead time is shown in Fig-
ure 5b. The eight colors represent the eight parameter runs. Big
differences are seen in the black, magenta, and light-blue fieldlines,
which arrive from the strong westerly winds. The other parameter
runs appear to be driven downward by a large vortex located near
Cape Grim, which could be one of the main factors driving the large
variability among the parameter runs.

7 DRIVING APPLICATION – LARGE SCALE OCEANIC FEA-
TURE QUANTIFICATION

Our driving application is to visualize flow features from the Paral-
lel Ocean Program (POP), a high-resolution eddy-resolving ocean
circulation model [7]. POP was started using observational analy-
sis, and the general circulation is well represented. To allow inclu-
sion of the Arctic Ocean, it employs a displaced tripole grid. The
grid is 2.5D and has 40 layers of u and v velocity components at a
3,600 by 2,400 resolution that spans monthly from February 2001
to September 2003. Along with the u and v components, POP gen-
erates salinity and temperature variables. The dataset is 165 GB.

1http://sanfrancisco.cbslocal.com/2011/03/17/low-level-radioactive-
particles-to-reach-california-by-friday/



Figure 6: A global overview of the major ocean currents in the POP dataset. The currents were extracted by querying for fieldlines that
exhibited very low residence time for most of their existence. Many of the major currents, including the Equatorial, Antarctic Circumpolar,
and Gulf are easily observed. The color is modulated by yellow for deep to blue for shallow ocean currents.

Our analyses were conducted on Intrepid, a Blue Gene/P super-
computer at the Argonne National Laboratory. Intrepid contains
40,960 nodes consisting of quad-core 850 MHz IBM PowerPC pro-
cessors. Results were streamed over the Internet and the resulting
fieldlines were rendered interactively using an NVidia Quadro FX
3800 graphics card. We detail the various flow features visualized
and timing results in the following subsections.

7.1 Exploration of Eddies and Major Currents

Before exploration, we traced roughly two million fieldlines to cap-
ture the entirety of the flow field. Although not used in our primary
examples, we computed vorticity, divergence, velocity magnitude,
and gradient magnitude for our tests. We also stored the salinity and
temperature variables from the dataset with the fieldline geometry.
The stored data was roughly 3 GB, which is a significant reduction
from the original 165 GB. Once the data was loaded into memory,
we computed angle of turn, residence time, and residence length at
neighborhood sizes with radii from 1 to 128 in powers of 2. The
in-memory footprint of the data was roughly 10 GB.

The first features we aimed to quanity were the major ocean cur-
rents. To do this, we examined the areas of the ocean that exhibited
swift and relatively straight movement. Specifically, we queried for
fieldlines that had a low residence time (< 10) with a neighborhood
size of 8 for all of their vertices. A summary visualization of 10,000
randomly sampled fieldlines from this query is shown in Figure 6,
and it is colored by shallow areas of the ocean (in blue) to deeper
areas (in yellow). Some of the major currents that can be observed
in this figure are the Equatorial Currents, which travel almost per-
fectly horizontal, and the Antarctic Circumpolar Current, the most
dominant current in the Southern Hemisphere. The Gulf Stream
is also highly recognizable, bordering the continental shelf of the
United States and flowing towards Europe. Some other smaller cur-
rents include the Alaskan Current and the Labrador Current, which
flows between Greenland and Canada. Another small current is the
Beaufort Gyre, a shallow, wind-driven current in the Arctic Ocean.

The major currents have considerable effects on various small-

scale phenomena in the ocean. One of the primary benefits of
simulating ocean currents at such high resolution is the ability to
resolve smaller high-turbulence areas such as eddies. Eddies can
range from centimeters to hundreds of kilometers in diameter and
can persist for periods of days to many months. We examined var-
ious long-term eddies by querying for fieldlines that have high res-
idence length (> 125) in a neighborhood size of 4 for at least 50%
of their vertices. 10,000 randomly sampled fieldlines are shown in
the global visualization in Figure 7, and they are colored by shal-
low eddies (in blue) to deeper eddies (in yellow). The main areas
that exhibit these characteristics are close to the shorelines, where
major currents usually flow past and create turbulent activity. High
eddy activity is also observed around Madagascar, a phenomenon
that has been previously studied [2].

Eddies have interesting properties that we observed in more de-
tail. At the bottom of Figure 7, we zoomed into a portion of the
Weddell Sea, an area that has attracted attention to eddy activity [3].
The center image at the bottom of Figure 7 shows the relatively
straight areas of the current, obtained by querying for fieldlines that
had a low angle of turn (< 25◦) in a neighborhood size of 4 for
at least 50% of their vertices. The color is modulated by temper-
ature from cold (in blue) to hot (in yellow), and the width of the
lines is modulated by salinity. A higher-salinity and warmer cur-
rent is observed that appears to be driving turbulent activity close
to the Antarctic coast. We zoomed in on this area of turbulent activ-
ity and again queried for fieldlines that exhibit a low angle of turn,
but this time only for 10% of their vertices. The eddies appear to
be cold-core eddies, which are classified by having centers that are
cooler than the surrounding flow. Cold-core eddies also have the
property of being cyclonic, meaning they rotate clockwise in the
Southern Hemisphere and counterclockwise in the Northern Hemi-
sphere. This was verified by examining the centers of the eddies
and querying for fieldlines that have a very high residence length
(> 200) with a neighborhood size of 8 for at least 20% of their ver-
tices. The returned fieldlines are colored in white and their widths
are modulated by time to show the clockwise rotation of the eddies.



Figure 7: A global overview of some of the major ocean eddies in the POP dataset. These were found by querying for fieldlines that exhibited
high residence length for the majority of their existence. Some of the areas are magnified and colored to show cold-core eddy activity. The
color mappings are explained in Section 7.

Processes Fieldline Tracing Scalar Merging Startup Geometric Attributes Query Network Latency Overall Latency
64 N/A N/A 31.20 14.38 0.43 0.039 0.47
128 N/A N/A 15.18 7.31 0.22 0.037 0.26
256 67.68 134.27 7.82 3.67 0.11 0.037 0.15
512 47.89 91.45 4.32 1.84 0.061 0.042 0.10

1,024 36.24 70.56 2.71 0.93 0.034 0.058 0.092

Table 1: Average application timing results (in seconds) for the global ocean explorations depicted in Figures 6 and 7.

A similar experiment was carried out for the Arctic Ocean, an-
other widely studied area for eddy activity [8]. The result, shown at
the top of Figure 7, shows cold-core eddy activity that results from
a higher temperature flow from above. Analogous to the eddies in
the Weddell Sea, we extracted a core region of the major eddy to
show its cyclonic nature. Since these cold-core eddies are in the
Northern Hemisphere, they rotate counterclockwise.

7.2 Timing Results

We provide timing results from exploration of the POP dataset at
scales from 64 to 1,024 processes. Since our scalar merging pre-
processing step currently only works on datasets that can be loaded
in memory, we only provide preprocessing times from 256 to 1,024
processes. The timing results (in seconds) are shown in Table 1.

The “fieldline tracing” and “scalar merging” columns represent
the one-time step that occurs to generate the fieldline geometry
and merge scalar quantities with it. At 1,024 processes, we were
able to trace roughly two million fieldlines through the entire ocean
dataset in 36 seconds. This number includes the time spent reading
the dataset and writing the fieldline geometry. The scalar merging
takes about twice as long, primarily because it is reading in addi-
tional salinity and temperature quantities from the dataset. Overall,
the efficient I/O methods allowed us to obtain a very reasonable
preprocessing overhead for even a dataset in the hundreds of giga-
bytes.

The “startup” and “geometric attributes” timings convey the one-
time overhead associated with starting our application. The startup

times include I/O overhead and the time it takes to load balance
the data and build the necessary querying data structures. The ge-
ometric attributes time represents the time it takes to precompute
all of the geometric attributes of the fieldlines. Both of these steps
showed high scalability. At 1,024 cores, users would be able to
recompute an entirely new and extensive feature space in under a
second.

The “query”, “network latency”, and “overall latency” times de-
scribe the average time it took to query and the network latency
associated with sending the results from the global ocean queries in
Figures 6 and 7. The querying times were highly scalable, obtaining
an average time of 0.034 seconds at 1,024 processes for the largest
global ocean queries that we performed. The network latency ac-
tually became the bottleneck at larger scales, which resulted in less
scalability for the overall latency of feature extraction. The over-
all latency times between submitting a query and obtaining the first
parts of the result, however, were very interactive.

8 CONCLUSION AND FUTURE WORK

In this work, we have shown how data analytics can be used to fa-
cilitate the quantification of flow features using geometric and other
derived attributes. More importantly, we have shown how two high-
performance infrastructures can be integrated into the visual anal-
ysis pipeline for interactively exploring very large flow datasets.
Using the power of parallel processing is a necessity not just for the
processing of large data, but also in allowing exploration of very
large feature spaces.



To the best of our knowledge, we are the first to assess the usage
of geometric flow features defined on a variable-length window. We
believe these types of features can complement other scalar-based
approaches that detect vortices and other flow phenomena. As we
showed in the paper, these features helped us quantify global eddy
and circulation activity in a large-scale ocean simulation. They
were also key to defining other events in an atmospheric simula-
tion.

In the future, we would like to experiment with using our sys-
tem for analysis of even more complex oceanic features. One such
example is quantitatively addressing attributes of the Rossby Ra-
dius of Deformation, a long standing topic in oceanography. We
would also like to examine the usefulness of neighborhood-based
geometric features in domains other than flow, primarily those that
make use of temporal trend analysis. One other possible avenue of
study includes using clustering of fieldline results for visualization
purposes.

ACKNOWLEDGEMENTS

We thank Dr. Robert Jacobs of Argonne National Laboratory for
providing us with the initial motivation to work on this research
direction. We thank Dr. David Erickson III of Oak Ridge National
Laboratory for guidance on studying atmospheric models. We owe
Melissa Allen of University of Tennessee for her close collaboration
on all technical aspects to properly implement flow advection in
atmospheric models. Han-Wei Shen’s input was also pivotal to the
formation of this work. Our work was funded by DOE SciDAC
Ultrascale Visualization Institute (DOE DE-FC02-06ER25778).

REFERENCES

[1] H. Doleisch, M. Gasser, and H. Hauser. Interactive feature specifica-
tion for focus+context visualization of complex simulation data. In
Proc. of VisSym, pages 239–248, 2003.

[2] K. J. Heywood and Y. K. Somayajulu. Eddy activity in the south
indian ocean from ERS-1 altimetry. In Proc. of ERS Symp. on Space
at the Service of Our Environment, 1997.

[3] D. M. Holland. Explaining the weddell polynya – a large ocean eddy
shed at maud rise. Science, 292:1697–1701, 2001.

[4] M. Jiang, R. Machiraju, and D. Thompson. A novel approach to vortex
core region detection. In Proc. of VisSym, 2002.

[5] W. Kendall, M. Glatter, J. Huang, T. Peterka, R. Latham, and
R. Ross. Terascale data organization for discovering multivariate cli-
matic trends. In SC ‘09: Proceedings of ACM/IEEE Supercomputing
2009, Nov. 2009.

[6] W. Kendall, J. Huang, T. Peterka, R. Latham, and R. Ross. Visual-
ization viewpoint: Towards a general I/O layer for parallel visualiza-
tion applications. IEEE Computer Graphics and Applications, 31(6),
Nov./Dec. 2011.

[7] M. E. Maltrud and J. L. McClean. An eddy resolving global 1/10
ocean simulation. Ocean Modelling, 8(1-2):31 – 54, 2005.

[8] T. O. Manley and K. Hunkins. Mesoscale eddies of the arctic ocean.
Journal of Geophysical Research, 90:4911–4930, 1985.

[9] T. Peterka, R. Ross, B. Nouanesengsey, T.-Y. Lee, H.-W. Shen,
W. Kendall, and J. Huang. A study of parallel particle tracing for
steady-state and time-varying flow fields. In IEEE International Par-
allel and Distributed Processing Symposium (IPDPS), May 2011.

[10] I. Sadarjoen, F.H.P., B. Ma, D. Banks, and H. Pagendarm. Selective
visualization of vortices in hydrodynamic flows. In Proc. of IEEE
Visualization, 1998.

[11] K. Shi, H. Theisel, H. christian Hege, and H. peter Seidel. Path line
attributes - an information visualization approach to analyzing the
dynamic behavior of 3d timedependent flow fields. In In Proc. of
TopoInVis, 2007.

[12] J. Woodring and H.-W. Shen. Multi-variate, time varying, and compar-
ative visualization with contextual cues. IEEE Trans. on Visualization
and Computer Graphics, 12(5):909–916, 2006.


